Maximal Function Characterizations of Hardy Spaces Associated to Homogeneous Higher Order Elliptic Operators
نویسندگان
چکیده
Let L be a homogeneous divergence form higher order elliptic operator with complex bounded measurable coefficients and (q−(L), q+(L)) be the maximal interval of exponents q ∈ [1, ∞] such that the gradient semigroup { √ t∇e}t>0 is bounded on L(R). In this article, the authors establish the non-tangential maximal function characterizations of the associated Hardy spaces H L(R) for all p ∈ (0, q+(L)), which, when p = 1, answers a question asked by Deng et al. in [J. Funct. Anal. 263 (2012), 604674]. Moreover, the authors characterize H L(R) via various versions of square functions and Lusin-area functions associated to the operator L.
منابع مشابه
Hardy and BMO spaces associated to divergence form elliptic operators
Consider a second order divergence form elliptic operator L with complex bounded coefficients. In general, operators related to it (such as the Riesz transform or square function) lie beyond the scope of the Calderón-Zygmund theory. They need not be bounded in the classical Hardy, BMO and even some Lp spaces. In this work we develop a theory of Hardy and BMO spaces associated to L, which includ...
متن کاملLocal Hardy Spaces Associated with Inhomogeneous Higher Order Elliptic Operators
Let L be a divergence form inhomogeneous higher order elliptic operator with complex bounded measurable coefficients. In this article, for all p ∈ (0, ∞) and L satisfying a weak ellipticity condition, the authors introduce the local Hardy spaces hpL(R ) associated with L, which coincide with Goldberg’s local Hardy spaces h(R) for all p ∈ (0, ∞) when L ≡ −∆ (the Laplace operator). The authors al...
متن کاملN ov 2 00 6 Hardy and BMO spaces associated to divergence form elliptic operators
Consider the second order divergence form elliptic operator L with complex bounded coefficients. In general, the operators related to it (such as Riesz transform or square function) lie beyond the scope of the Calderón-Zygmund theory. They need not be bounded in the classical Hardy, BMO and even some Lp spaces. In this work we generalize the classical approach and develop a theory of Hardy and ...
متن کاملCorrection to “hardy and Bmo Spaces Associated to Divergence Form Elliptic Operators”
We present here a correction to an error in our paper [3]. We are grateful to Dachun Yang for bringing the error to our attention. In [3] we develop a theory of H1 (Hardy type) and BMO spaces adapted to a second order, divergence form elliptic (aka accretive) operator L in Rn, with complex, L∞ coefficents. In particular we establish the equivalence of several different H1 type spaces, based on ...
متن کامل0 Ja n 20 02 Hardy spaces and divergence operators on strongly Lipschitz domains
Let Ω be a strongly Lipschitz domain of Rn. Consider an elliptic second order divergence operator L (including a boundary condition on ∂Ω) and define a Hardy space by imposing the non-tangential maximal function of the extension of a function f via the Poisson semigroup for L to be in L1. Under suitable assumptions on L, we identify this maximal Hardy space with atomic Hardy spaces, namely with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014